Dynamics of particle migration in channel flow of viscoelastic fluids

نویسندگان

  • Gaojin Li
  • Gareth H. McKinley
  • Arezoo M. Ardekani
چکیده

The migration of a sphere in the pressure-driven channel flow of a viscoelastic fluid is studied numerically. The effects of inertia, elasticity, shear-thinning viscosity, secondary flows and the blockage ratio are considered by conducting fully resolved direct numerical simulations over a wide range of parameters. In a Newtonian fluid in the presence of inertial effects, the particle moves away from the channel centreline. The elastic effects, however, drive the particle towards the channel centreline. The equilibrium position depends on the interplay between the elastic and inertial effects. Particle focusing at the centreline occurs in flows with strong elasticity and weak inertia. Both shear-thinning effects and secondary flows tend to move the particle away from the channel centreline. The effect is more pronounced as inertia and elasticity effects increase. A scaling analysis is used to explain these different effects. Besides the particle migration, particle-induced fluid transport and particle migration during flow start-up are also considered. Inertial effects, shear-thinning behaviour, and secondary flows are all found to enhance the effective fluid transport normal to the flow direction. Due to the oscillation in fluid velocity and strong normal stress differences that develop during flow start-up, the particle has a larger transient migration velocity, which may be potentially used to accelerate the particle focusing.

منابع مشابه

Multiplex Particle Focusing via Hydrodynamic Force in Viscoelastic Fluids

We introduce a multiplex particle focusing phenomenon that arises from the hydrodynamic interaction between the viscoelastic force and the Dean drag force in a microfluidic device. In a confined microchannel, the first normal stress difference of viscoelastic fluids results in a lateral migration of suspended particles. Such a viscoelastic force was harnessed to focus different sized particles ...

متن کامل

Parametric study of a viscoelastic RANS turbulence model in the fully developed channel flow

One of the newest of viscoelastic RANS turbulence models for drag reducing channel flow with polymer additives is studied in different flow and rheological properties. In this model, finitely extensible nonlinear elastic-Peterlin (FENE-P) constitutive model is used to describe the viscoelastic effect of polymer solution and turbulence model is developed in the k-ϵ-(ν^2 ) ̅-f framework. The geome...

متن کامل

Arterial Blood Flow Blockage Time Due to an Interaction between a Foreign Second Phase and an Externally Originated Particle

A huge number of deaths in the world are the direct or indirect consequence of a disease which is called atherosclerosis. The disease could be due to an artery blockage by the interaction of an externally second phase with a particle which is entered to the bloodstream. The effect of some most important physical and geometrical affecting parameters on the blockage time of a microchannel due to ...

متن کامل

Comparisons of Experimental and Simulated Velocity Fields in Membrane Module Spacers

Spacers are used in spiral wound and plate and frame membrane modules to create flow channels between adjacent membrane layers and mix fluid within the flow channel. Flow through the spacer has a significant beneficial impact on mixing and resulting mass transfer rates but is accompanied by an undesirable increase in pressure drop. Computational Fluid Dynamics (CFD) is a common tool used to eva...

متن کامل

Focusing and alignment of erythrocytes in a viscoelastic medium

Viscoelastic fluid flow-induced cross-streamline migration has recently received considerable attention because this process provides simple focusing and alignment over a wide range of flow rates. The lateral migration of particles depends on the channel geometry and physicochemical properties of particles. In this study, digital in-line holographic microscopy (DIHM) is employed to investigate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015